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It is often the case that a substantial number of torsion angles
(both backbone and sidechain) in structures of proteins and nu-
cleic acids determined by NMR are found in physically unlikely
and energetically unfavorable conformations. We have previously
proposed a database-derived potential of mean force comprising
one-, two-, three-, and four-dimensional potential surfaces which
describe the likelihood of various torsion angle combinations to
bias conformational sampling during simulated annealing refine-
ment toward those regions that are populated in very high reso-
lution (<1.75 Å) crystal structures. We now note a shortcoming of
our original implementation of this approach: namely, the forces it
places on atoms are very rough. When the density of experimental
restraints is low, this roughness can both hinder convergence to
commonly populated regions of torsion angle space and reduce
overall conformational sampling. In this paper we describe a
modification that completely eliminates these problems by replac-
ing the original potential surfaces by a sum of multidimensional
Gaussian functions. Structures refined with the new Gaussian imple-
mentation now simultaneously enjoy excellent global sampling and
excellent local choices of torsion angles.

INTRODUCTION

Protein structure determination by NMR involves the o
mization of an underrestrained function. The number and
metric specificity of the available experimental restra
namely NOE-derived interproton distances, scalar coupl
chemical shifts, and dipolar couplings, are insufficient to
termine the structure of a protein in their own right (1). Con-
sequently, the use ofa priori information in the form o
ovalent geometry restraints (bond lengths and angles, c
ty, and planarity) and a van der Waals term (typically in
orm of some sort of simplified repulsive potential to prev
tomic overlap) is an essential prerequisite (1). In two recen

papers, we have shown that it is also possible, given the cu
availability of large numbers of very high-resolution (#1.75
Å) crystal structures, to include larger scale information re
ing to protein and nucleic acids asa priori restraints (2, 3).
These restraints are in the form of a database-derived pot
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of mean force (4) comprising one-, two-, three-, and fo
dimensional potential surfaces which describe the likelih
for various torsion angle combinations (2, 3). Unlike covalen
geometry restraints that relate to small-scale structural fea
and are confined to a single expectation value, the torsion
potentials of mean force permit several alternative confo
tional possibilities. This is achieved by biasing the samp
during simulated annealing refinement to conformations
are likely to be energetically possible by effectively limit
the choices of dihedral angles to those that are known
physically realizable (2). An example of such a restraint is
potential energy term that expresses the likelihood of a p
ular residue type having a given set ofw/c backbone torsio
angles and whose surface has minima located in thea-helical,
b-sheet, and left-handed helical regions of the Ramacha
plot. Because the potential energy surfaces are created
protein crystal structures, these larger scale conformat
database restraints are individually much less precise
traditional covalent geometry restraints, which originate f
small molecule X-ray structures at atomic resolution. Eve
we have shown that inclusion of the torsion angle potenti
mean force improves the local accuracy of NMR struct
significantly without affecting the agreement with the exp
mental NMR restraints (2, 3).

THE PROBLEM

Experience with our original implementation of the tors
angle potential of mean force (2, 3) (which we will now refe
to as “DELPHIC torsions,” fordatabase-elucidatedlikelihood
‘phor’ internalcoordinates) has suggested that in certain c
it may be rather difficult to optimize by simulated anneal
For example, in some structures refined against the DELP
torsion potential, a small number of residues occasio
appears to be stuck in poorf/c conformations, even thoug
there are no restraints holding them there.

The DELPHIC potential surfaces do not appear to the e
be rough enough to present difficulties to optimization (
1a), and indeed one-dimensional slices through these pote

show them to be reasonably smooth (Fig. 1b). The slight
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250 KUSZEWSKI AND CLORE
“blockiness” of the potential at this level is an artifact of
implementation. Specifically, the potential of mean forc
determined in 10° steps (as described in Ref.2), and the value
at any particular torsion angle value are calculated by li
interpolation from the neighboring grid points. Similarly,
derivative of the potential with respect to the torsion ang
estimated from the local slope of the potential, calculated
the heights of the grid points that surround the partic
torsion angle of interest.

Inspection of the Cartesian-space atomic forces tha
DELPHIC potential produces yields a surprise: they are
tremely rough. Figure 2 shows the magnitude of the forc

FIG. 1. The DELPHIC torsion potential surface for the backbonef/c
angles of threonine. (a) The two-dimensionalf/c potential surface, generat
from 638 threonine residues in a database of high-resolution (#1.75 Å) protein
crystal structures as described in (3). The surface is color coded from red (l
energy) to purple (high energy), with contours drawn in 1 kcal/mol increm
(b) A one-dimensional slice through this potential, taken in theb-sheet regio
(c 5 139°).
the backbone nitrogen atom of a threonine residue in thex, y,
s

ar
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andz directions. The “blockiness” that appeared to be mino
the potential surface is now obvious, and in several places
the direction of the force changes instantaneously. Presum
these atomic forces are so erratic because the convolution
torsion angle to Cartesian coordinate space magnifies the
inaccuracies of the interpolated potential. Since simulated an
ing by means of molecular dynamics assumes that the forc
atoms are continuous, the degree of roughness seen in our o
implementation of the DELPHIC torsion potential can obvio
cause the type of convergence problem we have noted.

REPLACING THE INTERPOLATED POTENTIAL
BY A SUM OF GAUSSIANS

To eliminate the problems associated with the rough d
atives of the interpolated DELPHIC torsion potential, we h
replaced the interpolated table of raw potential of mean f
values with a sum of fitted Gaussian curves, which are g
anteed to have continuous derivatives. In the two-dimens
case individual Gaussians are of the form

gauss~height, centerx, centery, widthx, widthy,

positionx, positiony!

5 height * exp~2shortestDelta~centerx,

positionx!
2/widthx! * exp ~2shortestDelta~centery,

positiony!
2/widthy!

FIG. 2. Forces on the backbone nitrogen atom of threonine generat

s.
the DELPHIC torsion potential as a function of the backbone torsion anglef.



r,
h
l
is

s t
ea

su

raw
gy is
, and
ian’s
e grid

. (a)
the

s (b) A
o -
p d and

top
p ent
o e te
( el)
t xim
o

251GAUSSIAN DELPHIC POTENTIALS
where height is the height of the Gaussian at its cente
center is defined by centerx and centery, its width along eac
axis is defined by widthx and widthy, the position to be eva-
uated is defined by positionx and positiony, and shortestDelta
given by

shortest Delta~a, b! 5
ua 2 bu

3608 2 ua 2 bu
if ua 2 bu , 1808,

otherwise.

Similar functions were defined to allow fitting of Gaussian
one-, two-, three-, and four-dimensional potentials of m
force.

Each raw potential of mean force surface is fitted by a

FIG. 3. Illustration of the iterative Gaussian fitting procedure. The
anel shows the original interpolated potential, determined from the pot
f mean force in 10° intervals. A Gaussian is fitted to it as described in th
middle panel) and subtracted off. The remaining potential (lower pan
hen used to fit another Gaussian, and the procedure is repeated. A ma
f 32 Gaussians is used to fit each potential surface.
of these Gaussian functions in the manner illustrated schemG
its

o
n

m

ically in Fig. 3. For each Gaussian, the point on the
potential surface with the greatest absolute value ener
located. Its position gives the center of the new Gaussian
its energy is its height. Four estimates of the new Gauss
width are made along each axis, using the energies at th
points (center22), (center21), (center11), and (center12),
using the equation

estWidth~centerPosition, centerHeight,

neighborPosition, neighborHeight!

5 2shortestDelta(centerPosition, neighborPosition)2

4 ln(neighborHeight/centerHeight)

FIG. 4. Example of the Gaussian DELPHIC torsion potential surface
The two-dimensionalf/C potential surface for threonine, calculated from
um of 32 two-dimensional Gaussians fitted as described in the text.
ne-dimensional slice through this potential atC 5 139°, showing, by com
arison with Fig. 1b, the detailed agreement of the original interpolate
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at-aussian potentials.



ns
ei

eig
t th
st

s a
ax
th
ne

tim
us

en

po
ce
rm
s
pr
th
t

the
y

l ang
f sia
D ce
t

HIC
the

ol (
er
) of
ate

ed in
r the
term.
o
their
ack-

veral
the
ted
IC

with
rlaps.
ar-
IC

st
85
and

in-

nneal

alent
g Waals
r ith a
t rsion
a PHIC
t aling,
e lues
o ,

times
HIC

ed
orsi
ced

e

252 KUSZEWSKI AND CLORE
where centerPosition and neighborPosition are the positio
the center of the Gaussian and the neighboring grid point b
used to estimate the width, and centerHeight and n
borHeight are the values of the potential of mean force a
center and neighboring grid points. The individual width e
mates from the four neighboring grid points along each axi
averaged to give the width of the new Gaussian along that
Finally, the value of the new Gaussian at every grid point in
raw surface is subtracted from the raw surface, leaving a
raw potential of mean force. This process was iterated 32
for each different type of potential surface, yielding 32 Ga
sians whose sum reproduces the original interpolated pot
with reasonable accuracy.

Inspection of the resulting Gaussian DELPHIC torsion
tential surfaces (Fig. 4) shows that the Gaussians reprodu
original potential surface reasonably well, both in overall te
(Fig. 4a) and in detail (Fig. 4b). The Cartesian-space force
the atoms that the Gaussian DELPHIC torsion potential
duces are shown in Fig. 5. Besides being obviously smoo
their magnitudes are very close to those produced by
interpolated potential (Fig. 2), with one exception. In
interpolated potential, the region aroundf 5 90° shows a ver
arge discontinuity in the forces, which instantaneously ch
rom large negative to large positive values. The Gaus
ELPHIC potential, in smoothing out this transition, redu

FIG. 5. Forces on the backbone nitrogen atom of threonine generat
the Gaussian DELPHIC torsion potential, as a function of the backbone t
anglef. Note their similarity to the original forces (Fig. 2), and their redu

xtrema in the neighborhood off 5 90°.
he extreme values of the forces significantly.
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TESTING THE GAUSSIAN DELPHIC
TORSION POTENTIAL

To evaluate the performance of the Gaussian DELP
torsion potential, we calculated a series of structures with
sequence of the B1 domain of streptococcal protein G (5) using
a standard Cartesian-space simulated annealing protoc6)
with the program XPLOR (7), comprising 1000 steps (5 fs p
step) at 2000 K, followed by 3000 steps (5 fs per step
cooling down to 100 K, and finally 250 steps of conjug
gradient minimization. No experimental restraints were us
the calculations and the target function comprised terms fo
covalent geometry and a quartic van der Waals repulsion
In addition, a radius of gyration restraint (8) was included t
ensure that the coordinates moved significantly from
starting conformation (an extended strand), had realistic p
ing density, and yielded final structures that included se
turn conformations. Twenty structures were calculated with
Gaussian DELPHIC torsion potential, 20 with the interpola
DELPHIC torsion potential, and 20 without the DELPH
torsion potential.

All the calculated structures had excellent agreement
standard covalent geometry and no van der Waals ove
PROCHECK’s (7) evaluation of the structures, however, v
ied widely (Table 1). Structures calculated with no DELPH
torsion potential only had 216 6% of their residues in the mo
favorable regions of the Ramachandran plot, compared to6
3 and 956 3% for those calculated with the interpolated
Gaussian DELPHIC potentials, respectively. Although the

TABLE 1
Ramachadran Statistics for the Ensemble of Structures Calculated

with and without the DELPHIC Torsion Potentiala

Percentage of residues in

No
DELPHIC
potential

Interpolated
DELPHIC
potential

Gaussian
DELPHIC
potential

Most favored regions 21.26 6 85.56 3 94.56 3
Additionally allowed regions 46.66 7 8.46 3 3.66 2
Generously allowed regions 22.96 5 3.56 2 1.66 1
Disallowed regions 9.36 5 2.66 2 0.26 0.6

a Twenty structures were calculated for each ensemble by simulated a-
ing, as described in the text and starting from an extended strand (f 5 2135°,
c 5 139°). The target function in all cases comprises terms for cov

eometry (bonds, angles, and improper torsions), a quartic van der
epulsion term to prevent atomic overlap, and a radius of gyration term w
arget value of 9.5 Å. One ensemble was calculated with no DELPHIC to
ngle potential. The other two ensembles were calculated with the DEL

orsion angle potential included in the target function for simulated anne
ither in its original interpolated form or in the Gaussian form. The final va
f the various force constants are as follows: 1000 kcalz mol21 z Å22 for bonds

500 kcalz mol21 z rad22 for angles and improper torsions, 4 kcalz mol21 z Å24

for the van der Waals repulsion term with the hard-sphere radii set to 0.8
their value in the CHARMM19/20 parameters, and 20 for the DELP

by
on
torsion angle potential.
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253GAUSSIAN DELPHIC POTENTIALS
terpolated DELPHIC potential clearly results in a big impro
ment in the quality of the Ramachandran plot, the simul
annealing schedule is unable to converge to structures wi
lowest DELPHIC torsion potential energies. This is due to
presence of rough forces that leave certain residues cau
higher energy conformations, as evidenced by 2–3 and 3
of residues remaining in disallowed and generously allo
regions, respectively, of the Ramachandran plot. The
nificant additional improvement offered by the Gaus
DELPHIC torsion potential (see Table 1) indicates that
smoother forces from the Gaussian surface effectively e
nate the convergence problem.

To evaluate the conformational sampling for the three se
structures, the mean coordinates for each ensemble wer
to best fit each individual structure (Fig. 6). The aver
backbone root mean square deviation (rmsd) of each stru
to its mean coordinate positions provides a measure of co
mational sampling, with larger rmsd values indicating be
sampling. Structures calculated with no DELPHIC torsion
tential had backbone rmsd values of 7.16 0.7 Å to their mean
Surprisingly, structures calculated using the interpol
DELPHIC torsion potential only showed a backbone r
value of 4.06 0.9 Å. Visual inspection of the structures (F
6) confirms the poor sampling with the interpolated DELP
torsion potential. This sampling problem had gone undete
in our previous tests of the interpolated DELPHIC tors
(2, 3) because those earlier calculations were only perfo
using complete sets of experimental restraints where the
sion of the interpolated DELPHIC potential did not result in
increase in coordinate precision. The source of the sam
and convergence problems are the same: namely, the
forces prevent the coordinates from moving easily thro
certain regions of Ramachandran space, thereby inhib
full sampling. The structures calculated using the Gaus
DELPHIC torsion potential have a backbone rmsd valu
7.96 1 Å, indicating that the smoother forces have elimina
the sampling problems as well.

It should be emphasized that for structures calculated w
large number of NMR restraints, there is little to choose f
between the interpolated and Gaussian DELPHIC poten
For example, in the case of the 33-kDa MEF2A-DNA comp
that was solved on the basis of 4560 experimental N
restraints (including numerous torsion angle restraints)10),
essentially no overall difference can be detected between
tures calculated with the interpolated and Gaussian DELP
potentials, and both the overall precision of the coordin
(0.5–0.6 Å) and the percentage of residues in the most f
able region of the Ramachandran map (which spans a ran
83–92% with a mean value;87–88%) are very similar. Whe
one would clearly expect the Gaussian DELPHIC potenti
have a clear cut advantage over the interpolated one w
be in cases of structures calculated with very few NMR

straints (11).
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CONCLUDING REMARKS

We have uncovered a shortcoming of our original im
mentation of the DELPHIC torsion potential (2, 3), which
seeks to bias structures toward combinations of torsion a

FIG. 6. Ensemble of structures calculated with (a) no DELPHIC tor
potential, (b) the original interpolated DELPHIC torsion potential, and (c
Gaussian DELPHIC torsion potential. The structures were calculated
scribed in the text, and are best fitted to the mean coordinate position
given ensemble.
that are commonly seen in protein crystal structures. Our
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254 KUSZEWSKI AND CLORE
original implementation produced surprisingly rough force
the atoms involved in a given torsion angle or groups of tor
angles, which in turn reduced both conformational samp
and convergence to structures with commonly seen to
angles. This does not present an issue when calculation
carried out with very complete sets of experimental N
restraints, but does become significant when calculation
carried out with minimal experimental NMR restraints.
replacing our original implementation with one that evalu
the potential energy, and thus the atomic forces it prod
with a sum of several multidimensional Gaussians, we
completely eliminated these rough forces. Smoothing ou
atomic forces removes any sampling and convergence
lems, resulting in structures that sample all the possibilities
are consistent with the experimental restraints, but which
exhibit torsion angle combinations that are as good as
seen in high-resolution (#1.75 Å) crystal structures. We al

xpect that the Gaussian DELPHIC potentials will be usefu
he refinement of low-resolution X-ray structures of macrom
cules.
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